
J. Fluid Mech. (2003), vol. 495, pp. 19–33. c© 2003 Cambridge University Press

DOI: 10.1017/S0022112003006062 Printed in the United Kingdom

19

Self-organization of decaying
quasi-two-dimensional turbulence in
stratified fluid in rectangular containers

By S. R. MAASSEN, H. J. H. CLERCX AND G. J. F. VAN HEIJST
Fluid Dynamics Laboratory, Department of Physics, Eindhoven University of Technology,

PO Box 513, 5600 MB Eindhoven, The Netherlands

(Received 26 November 2002 and in revised form 2 June 2003)

Laboratory experiments on decaying quasi-two-dimensional turbulence have been
performed in stratified fluid inside containers with length-to-width ratios δ up to 5.
The Reynolds number Re of the horizontal flow, based on the r.m.s. velocity of the
initial flow field and the half-width H of the container, was typically between 1000
and 3000. The turbulence was generated by towing an array of vertical cylinders
through the container which was filled with a two-layer stratified fluid. By varying the
grid configuration a different amount of angular momentum could be added to the
initial flow. The evolution of the flow was visualized by two-dimensional particle
tracking velocimetry. The observed decay has been investigated with the emphasis
on the final states as function of δ, Re and the angular momentum initially added
to the flow. In addition, numerical simulations were carried out for decaying two-
dimensional turbulence on rectangular domains with δ =2 and 3. In these runs zero
net angular momentum was added to the initial flow field. The numerical study
focused on the final states as a function of δ and Re. The numerically obtained
final states appeared to agree with the experimental observations. Furthermore, they
indicate a clear difference between the predictions of quasi-stationary final states
from statistical-mechanical theories and the final states as found in the numerical
simulations.

1. Introduction
Previous experimental and numerical studies of decaying two-dimensional turbu-

lence in square and circular domains with no-slip (or, for numerical simulations,
stress-free) boundaries by Li & Montgomery (1996), Li, Montgomery & Jones (1996,
1997), Clercx, Maassen & van Heijst (1998, 1999) and Maassen, Clercx & van Heijst
(2002) revealed the important role the type of boundary conditions plays in the
decay process. In particular, decay with no-slip boundary conditions is relevant,
and differs considerably from decay with stress-free boundary conditions. The most
frequently observed quasi-stationary final state in these experiments and simulations
is a domain-filling cell. This final state is observed for the circular domain (with
non-zero net angular momentum added to the initial flow) by Li et al. (1996) and
Maassen et al. (2002), and for the square domain (regardless of the amount of
net angular momentum added to the initial flow) by Clercx et al. (1998, 1999) and
Maassen et al. (2002). The role of the non-zero net angular momentum added to
the initial flow in the decay of (quasi-)two-dimensional turbulence seems to be an
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acceleration of the self-organization process. Finally, a dipolar structure is found for
decaying two-dimensional turbulence in a circular domain (with zero net angular
momentum added to the initial flow) by Li et al. (1996, 1997) and Maassen et al.
(2002).

In the present experiments on decaying quasi-two-dimensional turbulence in
rectangular containers, an initially small-scale, disordered (quasi-)two-dimensional
flow, generated by forcing the fluid with a grid of vertical rods, organizes into a linear
array of vortex cells with alternating circulations. This phenomenon itself is not new:
it was observed by van Heijst, Davies & Davis (1990), van de Konijnenberg et al.
(1994) and Flór (1994), in laboratory experiments on spin-up phenomena and on
decaying stably stratified flow in rectangular containers. However, these experimental
studies concern decay processes from an initial two-dimensional flow field possessing
either large-scale symmetries or a large amount of angular momentum (with respect
to the centre of the container). In the experiments by Flór (1994), two different types
of forcing were used to create an initial flow field. In one type of experiment, the fluid
was forced by two oppositely positioned jets mounted on the longer sidewalls of the
container. For moderate aspect ratios (δ � 3) these jets gave rise to one large initial
circulation cell, with a size comparable to the length of the longer side of the container.
For larger aspect ratios (δ � 4) two large circulation cells with sizes comparable to the
half-length of the longer side were formed during the forcing. In both cases, the initial
circulation cells were observed to organize into an array of smaller, almost circular
vortices, with sizes comparable to the smaller side of the container. Alternatively, an
initially small-scale flow was created by stirring the fluid with a rake (by hand), and
a cell pattern of vortices with sizes comparable to the smaller side of the container
was formed due to self-organization of decaying quasi-two-dimensional turbulence.
A similar phenomenon has been observed during the spin-up of a non-stratified fluid
in a rectangular container (van Heijst et al. 1990; van de Konijnenberg et al. 1994),
in which the flow is approximately two-dimensional due to the presence of a uniform
background rotation. In these experiments, the angular velocity of a steadily rotating
container was suddenly increased to a new constant value. The adjustment of the fluid
inside the container to this new angular velocity is characterized by the formation of
a cellular pattern that fills the entire flow domain. In both types of experiment the
number of vortices in the final cell pattern is approximately equal to the aspect ratio
δ of the container.

The aim of the present investigation is to gain a deeper understanding of the
cell pattern formation in decaying quasi-two-dimensional turbulence in rectangular
containers with δ �= 1, as was observed in the rake-forced experiments. Since no
symmetry or large-scale motion is introduced to the flow initially, the evolution
towards a final cell pattern in these experiments is less clear and predictable than in jet-
forced flow in a stratified fluid or in spin-up experiments. In particular, we focus on the
role of the angular momentum of the initial flow field, which can be controlled in
the experiments (see § 3). In all previous experiments the initial two-dimensional flow
field contained angular momentum, but its role in the decay process was completely
ignored (except for the spin-up experiments). An important question is: how will
the decay process be modified when the initial flow field does not contain angular
momentum?

The organization of this paper is as follows. In § 2 a brief outline of the experimental
technique is given. The results of laboratory experiments on decaying stably stratified
turbulence in containers with different aspect ratios (δ = 2, 3, 4, and 5) are presented
in § 3. A discussion of this study and conclusion are presented in § 4.
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Figure 1. Top view of the experimental configuration for a rectangular domain with aspect
ratio δ = L/H . A grid of cylindrical rods (each with a diameter d) is moved with constant
speed V along the x-axis, from one side of the domain to the other side.

2. Experimental set-up
The laboratory experiments presented in this section were performed in a

rectangular Perspex container with horizontal dimensions 200×40 cm2. The horizontal
dimensions of the actual working flow domain were determined by the position of a
removable Perspex wall mounted between the two longer sides of the container (see
figure 1). In this way, the aspect ratio δ, defined as the ratio between length and
width of the working flow domain, could be varied. Apart from the geometry of the
container, the experimental equipment used in the present experiments is similar to the
set-up used for experiments in circular and square containers described by Maassen
(2000) and Maassen et al. (2002). Therefore, we give here only a concise description of
the experimental procedure and discuss only briefly the typical behaviour of decaying
stratified flow.

The whole container (that is, the two regions on either side of the removable wall)
is filled with a two-layer fluid, consisting of a layer of salty water at the bottom (with
a density ρ2 ≈ 1.1 g cm−3) and a layer of fresh water on top (density ρ1 ≈ 1.0 g cm−3),
both with a thickness of approximately 10 cm. Due to molecular diffusion of salt and
to mixing of the two fluids introduced during the filling of the container, a linearly
stratified interfacial layer is established at the interface between the fresh and the
salty fluid layers. The thickness of this interfacial layer varies from a few centimetres
immediately after the container is filled, to approximately 10 cm after a few days.
Therefore, the buoyancy frequency within this layer, defined as

N 2 = − g

ρ0

ρ1 − ρ2

h
, (2.1)

with g the gravitational acceleration, h the thickness of the interfacial layer and
ρ0 = (ρ1 + ρ2)/2 the average density within this layer, varies between N = 4 rad s−1

and N = 2.5 rad s−1.
At the start of each experiment, a small-scale, disordered flow field is generated

in the fluid by moving a grid of vertical bars (each with a diameter d =3mm)
parallel to the longer sides of the container (see figure 1). A detailed description
of this forcing mechanism can be found in Maassen et al. (2002). After the grid
has reached the opposite side of the domain, it is lifted out of the fluid by hand.
During the forcing, many small-scale vortices emerge in the wake behind the moving
vertical bars. Thus, an initially three-dimensional turbulent flow is generated in the
two unstratified layers as well as in the linearly stratified interfacial layer. However, in
the unstratified layers these three-dimensional motions damp out quickly, whereas the
motion in the stratified interfacial layer collapses to a planar, quasi-two-dimensional
flow, which shows a much slower decay. This collapse from three-dimensional to
quasi-two-dimensional flow in the interface is accompanied by the generation of
internal waves. A more extensive discussion of the vertical collapse and internal wave
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generation in stratified turbulence is presented by Riley, Metcalfe & Weissman (1981),
Lilly (1983) and Riley & Lelong (2000).

To visualize and quantify the quasi-two-dimensional flow in the interfacial layer,
the fluid is seeded with small polystyrene particles with density ρ ≈ 1.04 g cm−3 and a
typical size of 1 mm. The motion of these particles is monitored by a video camera
mounted at some distance above the container and recorded on a video tape. After the
experiments, instantaneous velocity fields are determined by means of particle tracking
velocimetry (PTV). In order to obtain additional information on the flow field, such
as contour plots of the vorticity field, the stream function and the Weiss function
(see Weiss 1981), the non-gridded vector fields obtained by PTV are interpolated to a
grid of 40 × 40 grid points by using a cubic spline interpolation method (for details,
see Nguyen Duc & Sommeria 1988), and subsequently fitted with a doubly truncated
series of Chebyshev polynomials. The Chebyshev fitting procedure has primarily been
introduced to improve the computation of the vorticity field from the PTV data (see
Maassen 2000). The total errors in the velocity field, introduced by PTV and the
post-processing procedure, are estimated to be on the order of 10%.

The Reynolds number of the experiments is defined as Re∗ = HU/ν, with H the
half-width of the short sidewall of the container†, U the root-mean-square velocity
of the initial flow field, and ν the kinematic viscosity of water. All variables are
made dimensionless using the length scale H and the eddy-turnover time H/U .
In the present experiments, the Reynolds number Re∗ varied between Re∗ ≈ 1000
and Re∗ ≈ 3000. However, due to strong vertical shearing in the stratified interface,
dissipation of kinetic energy in the experiments is much stronger than in numerical
simulations of purely two-dimensional decaying turbulence with no-slip boundaries
and comparable Reynolds numbers (see Yap & Van Atta 1993; Fincham, Maxworthy
& Spedding 1996; Maassen et al. 2002). Therefore, the actual effective Reynolds
number of the present experiments is lower than Re∗. A detailed comparison for the
square-container case has been discussed by Maassen et al. (2002). There it was found
that Re ≈ 0.4Re∗.

An analysis of the role of vertical shearing, the influence of the strength of the
stratification, and the different behaviour of decaying quasi-two-dimensional flows in
linearly stratified and two-layer fluids has been omitted for the present experiments.
These issues have been considered for the experiments in square and circular
containers as reported by Maassen et al. (2002). These experiments revealed that
the quasi-two-dimensional motions in the centre of the linearly stratified interfacial
layer are shielded from the (almost motionless) unstratified layers above and beneath
the interface. In agreement with the observations made by Yap & Van Atta (1993),
the dissipation of kinetic energy is more effective in experiments with a stronger
stratification, while the dissipation of enstrophy (Ω = 1

2

∫
ω2 dA, with ω the vorticity)

seems to be unaffected by the strength of the stratification. These experiments also
reveal that approximately 80% of the total dissipation is due to vertical shearing
of the horizontal velocity, and the remaining 20% is due to horizontal strain (in
agreement with observations by Fincham et al. 1996). It is anticipated that these
conclusions also hold for the present experiments in rectangular containers where a
similar experimental set-up has been used.

† The present investigation is focused on the evolution of the randomly disturbed flow to an
array of vortices with a characteristic radius H , and not on the small-scale details of the forcing.
Therefore, we prefer the width of the container over the mesh size of the rake as the characteristic
length scale in our (numerical) experiments.
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Label δ Tb Grid V (cm s−1) Re∗ Shown in figure:

1 2 0.09 R4 15 1000 3
2 2 0 R1 15 1500 5
3 2 0.01 R5 15 1000 4
4 3 0 R2 20 3000 6
5 3 0.09 R4 30 1500 –
6 4 0 R3 20 3000 –

Table 1. Characteristic parameters corresponding to the experiments plotted in figure 2,
performed in rectangular containers with aspect ratio δ. The numbers in the first column
correspond to the labels in figure 2. The parameter Tb denotes the normalized dimensionless
torque of the drag forces exerted on the grid during the forcing (defined in equation 3.1),
V is the speed of the grid and Re∗ the Reynolds number of the initial flow field. The grid
configurations (fourth column) are specified in the Appendix.

3. Laboratory experiments
During the initial forcing, a drag force is exerted by the fluid on each of the rods in

the moving grid. In about half of the experiments, the rods in the grid were arranged
in such a way that this drag force did not induce a net torque with respect to the
centre of the flow domain. This type of experiment is referred to as ‘unbiased’. In the
other experiments, the rods were arranged in such a way that the net torque induced
by the drag force was not zero, and therefore the grid introduced a slight ‘bias’ to the
initial flow. This bias resulted in a net large-scale motion superimposed on the small
vortices emerging in the wake of the grid. The bias in the initial forcing is measured
in terms of the normalized dimensionless torque Tb per rod with respect to the line
x = 0 (see figure 1), defined as

Tb =
|T |

NrFDH
, (3.1)

with FD the drag force exerted by the fluid on one rod (FD = 1
2
CDρV 2ld , with the

drag coefficient CD obtained from experimental data (see Blevins 1984), ρ the fluid
density, V the speed of the cylindrical rod, l the length and d the diameter of the rod),
Nr the number of rods in the grid, H the half-width of the domain and T the net
torque obtained by adding up the contributions FDy of all rods. (Note that the con-
tribution to T of a rod at position y exactly cancels the contribution of a rod at posi-
tion −y). The present experiments were carried out with Tb = 0, Tb = 0.01 or Tb = 0.09.
Here, the dimensionless torque is not used as a similarity parameter for collapsing data
from many different experiments, but is only used to produce (and to make a distinc-
tion between) ‘biased’ and ‘unbiased’ initial turbulent flows. The grid configurations
used to generate these values of Tb are listed in table 1 (fourth column) and specified
in the Appendix. We remark that a certain translation speed V resulted in a lower
value of Re∗ for experiments with Tb �= 0 than for experiments with Tb = 0 (see table 1).

Several experiments were performed for δ = 2, 3, 4 and 5 with Reynolds numbers in
the range Re∗ ≈ 1000–3000. The decay of kinetic energy in these particular experiments
is plotted in figure 2. The characteristic parameters corresponding to the labels in
this figure are indicated in table 1. The data in figure 2 suggest that the dissipation
of kinetic energy is stronger in experiments with δ = 2 than in experiments with
δ = 3 or δ = 4 (no such data could be obtained for experiments with δ = 5). The data
in figure 2 also suggest a reduced dissipation of kinetic energy when a substantial
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Figure 2. Normalized kinetic energy E/E0 plotted logarithmically versus time for the
experiments performed in containers with aspect ratio δ �= 1 that are explicitly shown in
this section. The parameters corresponding to these experiments are listed in table 1.

(a) t = 0.5 (b) t = 7

(c) t = 15 (d ) t = 30

Figure 3. Streak images of an experiment performed in a container with aspect ratio δ = 2,
Re∗ = 1000 and a small bias in the initial forcing (Tb =0.09). The tails of the streaks represent
the displacements of tracer particles during an interval of (a) 0.1, (b) 2.5 and (c, d) 5
dimensionless time units.

bias (Tb = 0.09) is present. Plotting the same data on a doubly logarithmic graph
reveals that these differences occur during the first 10 dimensionless time units. For
t � 10 all curves can be fitted with the power law E ∝ t−1.5±0.2 in agreement with
previous findings on decaying quasi-two-dimensional turbulence in stratified fluids
with similar buoyancy frequencies by Fincham et al. (1996) and Maassen et al. (2002).
In all experiments (either biased or unbiased), small quasi-two-dimensional vortices
emerge in the interfacial layer after the collapse from three-dimensional to quasi-
two-dimensional turbulence. These vortices immediately start to organize into larger
structures, and finally form a large-scale cell pattern that fills the whole flow domain.
This process is clearly illustrated by the streak images plotted in figure 3 for an
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Figure 4. Vorticity (left column) and stream function (right column) contour plots of an
experiment performed in a container with aspect ratio δ = 2, Tb = 0.01 and Re∗ =1000. Dashed
contours represent negative and solid contours represent positive values of the vorticity and
the stream function. The contour level increment for the vorticity is (a) 3, (c) 0.5 and (e) 0.1,
and for the stream function: (b) 0.04, (d) 0.012 and (f ) 0.005.

experiment performed in a domain with δ = 2. The streaks are produced by the PTV
software, which displays the positions of tracer particles during a certain prescribed
time interval. The length of each streak corresponds to the displacement of a particle
during this time interval.

(i) δ = 2

In the first experiment, shown in figure 3, the initial forcing was carried out with
a bias Tb = 0.09. This bias results in a large-scale clockwise circulation at t � 3.5,
which forms a strong central vortex at t � 7 (figure 3b). The final flow pattern in
this experiment consists of three counter-rotating vortices (figure 3c, d): the strong
vortex in the centre of the domain rotates in a clockwise direction; the two other
(weaker) vortices rotate in the anti-clockwise direction. This process is visible more
clearly in figure 4, where we have plotted some contours of vorticity (left column) and
stream function (right column), for another experiment with δ =2 and biased forcing
(Tb = 0.01). In these figures, the presence of a large-scale motion in the initial stage of
the evolution is particularly clearly visible in the stream function plots (figure 4b, d).
Together with the vorticity contour plots shown in figure 4(a, c), where many small
vortices are visible, this observation indicates that this ‘bias’ is superimposed on the
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δ = 2 δ = 3 δ = 4 δ = 5

Total number of experiments: 13 12 11 11

Number of vortices in final state: 1+ 2 3 3 4 5 4 + 1 5 6 5 6 7
Number of experiments with Tb = 0: 2 3 1 4 1 2 1 2 1 3 2 1
Number of experiments with Tb �= 0: 2 0 5 2 3 0 4 3 0 3 2 0

Table 2. Characteristic parameters of the final states observed in experiments that were
performed in rectangular containers with aspect ratio δ.

small vortices emerging in the wake of the grid. In this particular experiment, the
large-scale motion results in the formation of three negative vortices at t ≈ 3, which
merge into one central vortex at t ≈ 15. Meanwhile, positive vorticity is created in the
lower left and upper right corners of the domain. These vorticity patches are advected
by the central vortex into the interior of the domain, resulting in the formation of two
positive vortices in the left and right parts of the domain (figure 4e). The formation
of a large central vortex together with two wall-generated vortices of opposite sign is
generic for all experiments with δ = 2 in which a small bias was introduced to the fluid
during the forcing. This behaviour is similar to the cell pattern formation observed in
jet-forced experiments in stably stratified flow (Flór 1994) and in spin-up experiments
(van Heijst et al. 1990). Since the forcing in these two cases is symmetric with respect
to the centre of the container, the number of vortices in the final cell pattern is always
odd. In most of the present experiments, the pattern formation was less ‘symmetric’
than in the experiment shown in figure 4. For example, in figure 3(b–d) the vortex
emerging on the left of the strong vortex is much weaker than the vortex emerging in
the right of the domain.

In table 2 we list the number of vortices in the final cell patterns that are observed
in experiments with different values of δ, together with the number of biased and
unbiased experiments in which these specific flow patterns were formed. This table
indicates that, for the experiments with δ =2, a pattern of three vortices was formed
in almost all experiments with biased forcing. In two experiments, the flow was
dominated by one large vortex, accompanied by two vortices of opposite sign, with
sizes much smaller than the width of the domain. The number of vortices in this
latter flow pattern is indicated as 1+.

In the experiment shown in figure 5, the initial forcing was unbiased (Tb = 0).
In this case, no large-scale rotation is observed after the initial forcing, and two
negative and two positive vortices are formed at t � 10 (figure 5a). However, the two
positive vortices start to rotate around the (strongest) negative vortex on the right of
the domain at t � 20 (figure 5c), thus forming a rotating tripolar structure, and are
finally torn apart. This process can be understood by considering the Weiss function
Q = S2 − ω2 with ω the vorticity and S a measure of the rate of strain in a particular
area of the flow (see Weiss 1981). The Weiss function for the same experiment (figure 5,
right column) shows that the cores of the four vortices developing at t � 10 are
characterized by regions with negative values of Q, which are rotation-dominated
or elliptic. The strain-dominated or hyperbolic regions (Q > 0) develop between the
(stronger) negative vortex and the boundaries of the domain at t � 10. Since the
elliptic cores of the two weaker positive vortices are surrounded by a much larger
hyperbolic area, these small vortices are advected in a clockwise direction around
the negative vortex (thus forming an intermediate tripolar structure) and are finally
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Figure 5. Vorticity (left column) and Weiss function (right column) contour plots of an
experiment performed in a container with δ = 2, Tb = 0 and Re∗ = 1500. Left column: dashed
contours represent negative values of vorticity and solid contours represent positive values.
The contour level increment is (a) 0.2, (c) 0.15 and (e) 0.1. Right column: dashed contours
represent hyperbolic regions (Q > 0) and solid contours represent elliptic regions (Q < 0). The
contour level increment is (b) 0.15, (d) 0.08 and (f) 0.04 for the dashed contours and (b) 0.3,
(d) 0.15 and (f) 0.08 for the solid contours.

torn apart by this vortex. The formation of a rotating tripole is observed in almost
all unbiased experiments and simulations with δ = 2 and no-slip boundaries (see also
§ 4)†.

(ii) δ = 3

The influence of an initial bias is slightly different in experiments performed in
a domain with δ = 3. As can be inferred from table 2, the final patterns in these
experiments consist of three or four vortices in the biased experiments (Tb = 0.09)
and three, four or five vortices in the unbiased experiments (Tb = 0). In the case of
unbiased forcing, the number of vortices in the final state depends, as was found for
δ = 2, on the random position of one or two strong vortices in the earlier stages of

† The term ‘tripole’ refers to a vortex consisting of one large core accompanied by two smaller
and weaker satellites. The two satellites are not counted in the number of vortices of the final
cell pattern indicated in table 2. The tripolar structure should not be confused with a cell pattern
consisting of three vortices of more or less equal size and strength.
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Figure 6. Vorticity (left column) and Weiss function (right column) contour plots of an
experiment performed in a container with aspect ratio δ = 3, Tb = 0 and Re∗ =3000. The
contour level increment is (a) 0.6, (c) 0.2 and (e) 0.08 for the dashed (ω < 0) and the solid
(ω > 0) contours, (b) 1, (d) 0.2 and (f) 0.05 for the dashed contours (Q > 0) and (b) 1, (d) 0.4
and (f) 0.1 for the solid contours (Q < 0).

the evolution. Figure 6 shows the vorticity (left column) and Weiss function (right
column) contour plots for an experiment with δ =3 and Tb = 0. In this experiment,
two dominant elongated regions of vorticity are formed in the centre of the domain
at t � 4 (figure 6a): one region with positive vorticity on the left and a region with
negative vorticity on the right of the domain. The cores of these two vortices can be
recognized as the two elliptic regions near the centre of the upper wall in figure 6(b).
While these two vortices become more circular and move slightly more to the left (for
4 � t � 10), a new positive vortex is formed due to merging of two smaller positive
vortices on the right of the domain. Thus a pattern of three counter-rotating vortices
is formed at t � 10. Small variations in the shapes and positions of these vortices can
be observed by inspection of a set of snapshots for t > 10, which indicate that the cell
pattern is quasi-stationary. The Weiss function plots in figure 6(d, f ) indicate that the
elliptic cores of these three vortices are surrounded by hyperbolic regions between
the vortices and the boundaries of the domain.

The biased experiment with δ = 3 and Tb = 0.09 resulted in a large-scale motion
of the fluid in a clockwise direction, superimposed on the small vortices that are
formed in the wake of the moving grid. In contrast to the experiment with δ = 2
shown in figure 4, this large-scale motion does not roll up into one large vortex, but
it breaks up into two parts at t � 5, forming two negative vortices at t � 10. In our
experiment with Tb = 0.09, the flow organizes into a quasi-stationary pattern of four
counter-rotating vortices at t � 10. The break-up of this large-scale motion is due
to the detachment of vorticity from the viscous boundary layers. This wall-induced
vorticity rolls up into a positive vortex which separates the two negative vortices that
are formed from the large-scale motion. This decay scenario was observed in three
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experiments with δ =3 and biased forcing (Tb = 0.09). In two experiments (with the
same value of Tb), the initial large-scale motion rolled up into one central vortex, and
a pattern of three counter-rotating vortices was formed.

(iii) δ = 4 and δ = 5

The influence of an initial bias becomes less important when the value of δ

increases. In the case δ = 4 the final flow pattern consists of five counter-rotating
vortices in almost all experiments (see table 2). However, in some experiments one of
the vortices was considerably smaller than the other four. The number of vortices in
these experiments is denoted as 4 + 1. In one experiment a pattern of six counter-
rotating vortices is formed. In all biased experiments the net torque of the forcing
was taken Tb = 0.09.

The streak images for experiments with δ =5 show the formation of a cell pattern
consisting of five, six or seven counter-rotating vortices (see table 2). No difference
was observed between experiments with and without bias in the forcing.

4. Discussion and conclusion
The laboratory experiments performed in containers with different aspect ratios

δ show the self-organization of an initially disordered quasi-two-dimensional flow
towards a regular quasi-steady cell pattern that fills up the whole domain. The
number of vortices in these final cell patterns, Nf , depends on the aspect ratio of the
flow domain, although its exact value cannot be predicted from the initial conditions.
In most experiments we found Nf = δ or Nf = δ ± 1. The actual number of vortices
that is formed in a particular experiment depends on the (random) position of
one or two strong vortices during the intermediate stage of the flow evolution. In
some experiments, a small bias was introduced to the initial flow field during the
forcing (Tb �= 0). This bias appeared to have a large influence on the flow evolution in
containers with small aspect ratios (δ = 2 or δ = 3), but this influence is almost absent
in containers with larger aspect ratios (δ = 4 or δ = 5). This observation underlines the
importance of carefully performed experiments, particularly for δ � 3, for the analysis
and interpretation of decaying quasi-two-dimensional flows in stratified fluids in
rectangular containers.

One major disadvantage of the present experiments is the relatively low effective
Reynolds number of the flow (see figure 2). The strong dissipation of kinetic energy
in these experiments is mainly due to vertical shearing between different layers in the
stratified interface. One would expect that higher values of Re∗ could be obtained
by increasing the translation speed V of the forcing grid. However, experiments
performed with higher values of V showed the generation of very strong and energetic
internal waves. In these experiments, the kinetic energy of the quasi-two-dimensional
flow in the interface appeared to be even lower than in experiments with lower values
of V (in which less energy was ‘lost’ to internal wave generation). Therefore, it was
not possible to perform experiments with higher Reynolds numbers in the present
experimental configuration. Furthermore, the equipment used for quantitative flow
analysis was not suitable to study small-scale details of the flow evolution. In order
to obtain more detailed information about the cell pattern formation in rectangular
containers, high-resolution numerical simulations were carried out on decaying two-
dimensional turbulence in rectangular containers (with unbiased initial forcing). For
details of the numerical method and the initialization procedure, and a discussion of
the results of many runs with aspect ratio δ = 2 and δ =3 we refer to Maassen (2000).
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δ = 2 δ = 3

Total number of runs 19 10

Number of vortices in final state: 1+ 2 3 3 4 ?
Number of runs with Re= 1000: 5 4 1 3 2 0
Number of runs with Re= 3000: 7 1 1 3 0 2

Table 3. Characteristic parameters of the final states observed in numerical simulations on
rectangular domains with aspect ratio δ and no-slip boundary conditions.

δ = 2 δ = 3

Number of vortices in final state: 1 2 2 3
Number of runs: 3 2 4 1

Table 4. Characteristic parameters of the final states observed in numerical simultions on
rectangular domains with aspect ratio δ, Re= 1000 and stress-free boundary conditions.

The self-organization of decaying two-dimensional turbulence on a rectangular
domain with no-slip boundary conditions was simulated for two different aspect
ratios (δ = 2 and δ =3) and two different Reynolds numbers: Re =1000 and Re =3000.
Keeping in mind that Re ≈ 0.4Re∗ (see § 2), the Reynolds number in the numerical
experiments corresponds roughly to Re∗ ≈ 2500 and Re∗ ≈ 7500, respectively. The total
number of runs for each value of δ is listed in table 3, together with the number
of vortices observed in the final cell patterns and the number of runs in which this
particular type of cell pattern occurs. In the case δ =2, almost all numerical runs
showed the formation of a strong rotating tripolar vortex for Re = 1000 and Re =3000.
The location of this tripole is determined by the (random) position of a strong vortex
core at an earlier stage in the flow evolution. A similar process occurs in the runs
with δ = 3, where three or four strong vortex cores dominate the flow evolution and
a cell pattern of three or four counter-rotating vortices is formed. (In two of the
runs with δ =3 and Re =3000 the flow was dominated by small-scale structures and
no clear final cell pattern was formed. This observation is indicated in table 3 by a
question mark.) Similar computations have been performed with stress-free boundary
conditions. These simulations showed the formation of cell patterns with a topology
that differs completely from the quasi-stationary cell patterns observed in simulations
with no-slip boundaries. For example, on a domain with δ = 2 and stress-free boundary
conditions one or two vortices are formed, each containing only one sign of vorticity.
The topology of these vortices contrasts sharply with the rotating tripole observed
in simulations with δ = 2 and no-slip boundaries for comparable Reynolds number
(Re =1000). To illustrate the different decay scenarios for flows with no-slip and
with stress-free boundary conditions we have shown a few vorticity contour plots
from simulations with δ =2 and Re =1000 in figure 7. An overview of the number
of vortices in the final state of runs with stress-free boundary conditions is given in
table 4.

The formation of a cell pattern of counter-rotating vortices was also predicted by
maximum-entropy solutions for inviscid two-dimensional flow on a bounded rectan-
gular domain with aspect ratio δ �= 1. Pointin & Lundgren (1976) computed the statisti-
cal equilibrium state of a system of positive and negative point vortices on a bounded
rectangular domain, described by the sinh-Poisson equation ∇2ψ = −ω = −c sinh(βψ),
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Figure 7. Vorticity contour plots of simulations with δ = 2, Re= 1000 and no-slip (left column)
and stress-free (right column) boundary conditions. Dashed contours represent negative values
of vorticity, and solid contours represent positive values. The contour level increment is (a) 2,
(b) 1, (c, d) 0.5 and (e, f ) 0.2.

where the parameters c and β depend on the specific situation (see Joyce &
Montgomery 1973). On a domain with aspect ratio δ = 2, the solution of this equation
consists of two cells of opposite circulation, that both fill one half of the domain.
A similar prediction was made by Chavanis & Sommeria (1996) using a statistical
mechanical theory based on patchwise discretization of the initial vorticity field.
These authors found a monopolar equilibrium solution for a domain with aspect
ratio δ < 1.12 and a dipolar solution for a domain with 1.12 <δ � 2 (solutions for
δ > 2 were not described). Since these maximum-entropy solutions do not take into
account the effects of viscous boundary layers, the structure of these cell patterns is
entirely due to the rectangular geometry of the domain.

The different decay scenarios for flows with no-slip and stress-free boundaries
indicate that the formation of cell patterns in laboratory experiments and numerical
simulations of decaying (quasi-)two-dimensional turbulent flow in rectangular
containers with no-slip boundary conditions is not merely determined by the shape
of the container, but also depends significantly on the formation and detachment
of viscous boundary layers. This observation is further supported by the lack of
correspondence with maximum-entropy solutions for a bounded domain with δ = 2,
as presented by Pointin & Lundgren (1976) and Chavanis & Sommeria (1996). Such
a clear disagreement between predictions from statistical-mechanical theories and
numerical simulations was not found for the square container case.
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Appendix. Grid configurations
The drag force exerted on a cylindrical rod with diameter d and length l moving

with constant speed V through a fluid with density ρ is given by FD = 1
2
CDρV 2ld ,

where the appropriate value for the drag coefficient CD is obtained from experimental
data collected by Blevins (1984). Since the rods move parallel to each other and with
constant speed, the angular momentum Lrod induced by one rod (per unit length and
per unit density), defined with respect to the centre of the domain, is proportional to
the torque T exerted by this force:

Lrod =
1

ρl

∫ τ

0

T dt =
FDyτ

ρl
=

FDya

ρlV
=

1

2
CDVyad, (A 1)

where t is the time and τ the time duration of the forcing, and a the total displacement
of the rods (a = τV ). The grid configurations used in the laboratory experiments
are specified by means of the y-coordinates yi of the rods (in cm), see figure 1.
The net angular momentum L0 induced on the flow can be calculated from these
y-coordinates by using the expression: L0 =

∑P

i=1 Li =
1
2
CDV ad

∑P

i=1 yi , with P the
number of rods. The ‘bias’ Tb induced in the initial forcing can be calculated by means
of equation (3.1).

The five grid configurations used are:
Grid R1: (±18, ±17, ±10, ±9, ±8, ±1, 0)
Grid R2: (±18, ±16, ±14, ±12, ±3, ±1)
Grid R3: (±17, ±15, ±13, ±11, ±3, ±1)
Grid R4: (−19, 18, 14, −12, 10, 6, −5, 2)
Grid R5: (−19, 17, ±12, 7, −5, 2)
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